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We unify the gravitational and Yang-Mills fields by extending the diffeo- 
morphisms in (N = 4 + n)-dimensional space-time to a larger group, called the 
conservation group. This is the largest group of coordinate transformations under 
which conservation laws are covariant statements. We present two theories that 
are invariant under the conservation group. Both theories have field equations 
that imply the validity of Einstein's equations for general relativity with the 
stress-energy tensor of a non-Abelian Yang-Mills field (with massive quanta) 
and associated currents. Both provide a geometrical foundation for string theory 
and admit solutions that describe the direct product of a compact n-dimensional 
space and flat four-dimensional space-time. One of the theories requires that the 
cosmological constant shall vanish. The conservation group symmetry is so large 
that there is reason to believe the theories are finite or renormalizable. 

1. I N T R O D U C T I O N  

In his autobiographical notes, Einstein (1949) suggested that the con- 
struction o f  a unified field theory "would be most  beautiful, if one were to 
succeed in expanding the group once more, analogous to the step which led 
from special relativity to general relativity." In four prior papers (Pandres, 
1962, 1981, 1984a,b), we pursued Einstein's suggestion that the diffeomorph- 
isms (the covariance group for general relativity) somehow be extended to 
a larger group. In this Introduction and in Section 2 we recall the developments 
from these prior papers that are needed in subsequent sections. In recalling 
these developments,  we shall make minor changes in notation and terminology 
to enhance clarity. A diffeomorphism from coordinates x ~ to x a satisfies the 
commutat ion condition [ ~ ,  0v]x ~ = 0, where [0~, 0~] = 0~0~ - 0~0~, and 
a~ denotes partial differentiation with respect to x ~. (Partial differentiation 
is denoted also by a comma,  e.g., 0~x ~ = x~,~.) Initially (Pandres, 1962), we 
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merely proposed that this commutation condition be discarded. Our proposal 
was motivated by an argument, recalled in Section 2.1 of the present paper, 
which is a generalization of the "elevator" argument that led Einstein from 
special relativity to general relativity. In Section 2.2 we consider in detail 
why commutation of partial derivatives is not to be taken for granted. Briefly, 
the reason is that partial derivatives are defined on a class offunctionals on 
paths F(p) that contains the ordinary functions F(x) as a subclass. The 
new coordinates x a are such path-dependent functionals. Subsequently 
(Pandres, 1981, 1984a, b) we proposed, more specifically, that the condition 
[a~, a~]x ~ = 0 be replaced by the weaker condition 

x~[a~,  a~]x ~ = 0 

(We employ the summation convention. Greek and lowercase Latin indices 
take the values 0, 1, 2 . . . . .  N - 1.) Transformations satisfying this weaker 
condition are called conservative, and the group of such transformations is 
called the space-time conservation group. This is the largest group of coordi- 
nate transformations under which conservation laws are covariant statements. 
It is a proper subgroup of the path-dependent coordinate transformations, 
and contains the diffeomorphisms as a proper subgroup. 

The theories developed in the present paper are similar to Kaluza-Klein 
theory in that we work in N = 4 + n dimensions. However, we use simpler 
variational principles, and our Yang-Mills field will emerge without the 
"zero-mode approximation" of Kaluza-Klein theories. Modem Kaluza-Klein 
theories (Appelquist et al., 1987) are based upon the N-dimensional Hilbert 
variational principle 8 f R x / ~  dNx = 0, where R is the Ricci scalar (i.e., 
scalar under diffeomorphisms) and g is the determinant of the space-time 
metric g~. The field equations that flow from Hilbert's principle are the N- 
dimensional analog of Einstein's equations for the free gravitational field. 
The Einstein equations are not covariant under the space-time conservation 
group, because R is not an invariant under this group. Therefore, R,~Zg, the 
integrand in Hilbert's principle, is not a scalar density of weight + 1 under 
the space-time conservation group, nor does it differ from such a scalar 
density by a pure divergence. By contrast, the quantity x / -~  is a scalar 
density of weight + 1 under all path-dependent coordinate transformations, 
including those belonging to the space-time conservation group. We recall 
the prophetic remark by Dirac (1930) that "Further progress lies in the 
direction of making our equations invariant under wider and still wider 
transformations." Accordingly, we use the variational principle 

f dNx -- O 

which may be thought of as a "principle of stationary volume." Schr6dinger 
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(1950) recognized that this is the simplest general relativistic variational 
principle one can write down, but he noted that if one varies gw,, one obtains 
the Euler-Lagrange equations ~ gW~= 0, which cannot serve as field 
equations. This difficulty persists if one writes g~v = gijhiwhJv, where g,7 = 
d iag ( -  1, 1 . . . . .  1), and varies h~r One obtains the Euler-Lagrange equations 

h~ w = 0, which cannot serve as field equations. We shall see in Section 
3.1 that a major advantage of introducing path-dependent functionals is this: 
If we write 

hi~ = xi~ 

and vary the functionals x ~, we obtain the Euler-Lagrange equations 

(,fZ-~hi~),~ = 0 

which are covariant under the space-time conservation group, and also under 
the group of transformations from coordinates x ~ to ~-that satisfy the conditions 

and 

xJ,r~[~i, ~j].~ : 0 

�9 j 
g,~a = gij~-,Pc,a 

where g~aa = gij = d iag ( -1 ,  1 . . . . .  1). This group is called the f r a m e  
conservat ion group. The direct product of the space-time conservation group 
and the frame conservation group will be referred to simply as the conserva- 
tion group. 

If the x ~ were ordinary functions, rather than path-dependent functionals, 
then our Euler-Lagrange equations would be trivial identities. Since the x ~ 
are path-dependent functionals, however, these Euler-Lagrange equations 
serve as field equations for a very promising physical theory. In Section 3.4 
we present evidence that the gauge symmetry of  Yang-Mills theory is merely 
an approximation to our (exact) frame conservation group symmetry. This 
leads in a natural way to a "total" covariant derivative that differs from the 
usual covariant derivative with respect to the Christoffel symbol F ~ v  when 
the quantity differentiated has any Latin indices. We use a stroke I to denote 
this total covariant derivative. The affine connection for Latin indices is the 
negative of A~v, where Aij~ is the totally antisymmetric part of the Ricci 
rotation coefficient ~/ij~ under the permutation group of degree three. Thus, 

hitxlv = h ir - h~ F~" - hJ~A~v 

and h i ~ ,  = hir - hi~F~r + hj~AJ~. The use of  our total covariant derivative 
is equivalent to the use of a spin connection with torsion. (The values i = 
0, 1, 2, 3 are related to electromagnetism and spin angular momentum, while 
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the values i = 4, 5 . . . . .  N - 1 are related to the short-range interactions 
and the isospin-type variables of modern gauge theory.) We define the Yang- 
Mills field M ~ i  as the mixed symmetry part of the Ricci rotation coefficient 
~/~v/. With this definition, it turns out that M j  is just the "total curl" of hi~, i.e., 

M ~ v  i = hivl l~ - hi l~ 

We define a total Riemann tensor by 

91~f~  = hi~(hif~l~l~ - hif~[~l~) 

and a total Einstein tensor by 

1 
6I~,v = 91~ - ~ g~91 

where 91~= , 9 1 ~ ,  and 9t = 91~. In Section 4 we show that our field 
equations imply the validity of 

(~p~v 1 i : ~(J~ih v + Jvihi~) - (Ma~iM~v i ~g~ll ~f~iM~fli) 

where ( ~  is the symmetric part of g r~  and J~i = M ~ i l ~  is the total 
Yang-Mills current. These are just total Einstein equations with the stress- 
energy tensor of a non-Abelian Yang-Mills field and associated currents, and 
with a vanishing cosmological constant. In Section 3 we present evidence 
that the quanta of the field M~, i are massive. 

In Section 5 we obtain a large class of solutions to our field equations. 
This class includes solutions that describe the direct product of a compact 
n-dimensional space and flat four-dimensional space-time. Failure to admit 
such direct product solutions for n > 1 is the main weakness of classical, 
purely bosonic Kaluza-Klein theory (Appelquist et al., 1987). 

In Section 6 we discuss an alternate theory that is also covariant under 
the conservation group. The variational principle for this alternate theory is 

I (c~c~ + A)~/-~ dUx = o 

where C~ = hzV(h~,~ - h~,~) and A is a constant. When one varies h~, one 
obtains field equations that imply the validity of the total Einstein equations 
with the stress-energy tensor of a non-Abelian Yang-Mills field (with massive 
quanta) and associated currents, but with a cosmological constant that need 
not vanish. In Sections 6.1 and 6.2 we discuss the relative merits of the 
two theories. 

Quantization of our theories will be discussed in a future paper. Here, 
we merely note that the conservation group symmetry is so large that there 
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is reason to believe the theories are finite or renormalizable. Indeed, the 
symmetry is so large that points (and point particles) do not have invariant 
meaning. Points appear to have invariant meaning only if one fails to recognize 
the role played by the conservation group and hence limits one's transforma- 
tions to the diffeomorphisms. However, paths (and path-particles, i.e., strings) 
have invariant meaning. Thus, our theories provide the much-sought (Witten, 
1988) geometrical foundation for string theory. 

2. MOTIVATION AND MATHEMATICAL PRELIMINARIES 

2.1. Motivation 

In our first paper on field unification (Pandres, 1962) we began with 
the special relativistic equation of motion for a free particle d 2 x i / d s  2 = O, 

where - d s  2 = g i j d x i d x  j ,  and gi j  = diag(-1, 1, 1, 1). We considered the 
image equation of this free-particle equation under a transformation from 
coordinates x i to coordinates x ~, where [a~, 0~]x' r 0. This image equation is 

d 2 x  ~ dx~  d x  ~ d x  ~ 
ds  2 + F . . . .  f ~ v -  (1) ~ d s  d s  d s  

where F ~  is the Christoffel symbol computed from the metric g ~  = 
gijxi,~xJ, v, andfr = v - ~ ,  wheref/r = O~xi~ - O~,~ and v i = d x i / d s  is the 
(constant) first integral of d 2 x q d s  2 = 0. If [0r O~]xi,~ = 0, then f~, satisfies 
f~.~ + f,~,~ + f~,~,~ = 0, which are Maxwell's equations. Thus, it appears at 
first glance that Eq. (1) describes a charged particle moving in a gravitational 
and electromagnetic field. However, f ~  cannot be interpreted as the electro- 
magnetic field, because the relation v i = d x T d s  = xi,pdx~]ds implies that v i 

depends upon d x ~ / d s .  Although f ~  is a linear combination of the fi~, with 
coefficients vi which are constant along the world line of a particle, it is unsatis- 
factory that the values of these coefficients should depend upon d x r  This 
would imply that the electromagnetic field experienced by a particle depends 
upon the velocity of the particle, in disagreement with experiment. In two 
later papers (Pandres, 1973, 1977) we tried to get a satisfactory description 
of gravitation and electromagnetism alone by investigating a class of theories 
in which the antisymmetric tensorsfl~ are constant multiples of one another. 
This is the case if the transformation from x i to x '~ has the property that the 
four quantities [0~, 0.]x i are constant multiples of one another. However, 
transformations with this property do not form a group. Therefore, theories 
in this class suffer from the defect that they are not motivated by group- 
theoretic arguments, and therefore lack a "guiding principle" such as the 
principle of general covariance. The inescapable fact is that for transformation 
groups with [0~, O~]x ~ 4= O, the right side of equation (1) contains four linearly 
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independent antisymmetric tensors, while only one is needed to describe 
the electromagnetic field. This raises the intriguing question whether the 
antisymmetric tensors fi~v might somehow, collectively, describe the Yang- 
Mills fields of modem gauge theory. We shall see that this is indeed the case. 

2 . 2 .  M a t h e m a t i c a l  P r e l i m i n a r i e s  

Any ordered set of N independent real variables x ~ may be regarded as 
coordinates of points in an N-dimensional arithmetic space X. 

1. Paths. Let x~(k) be continuous functions of a real parameter k on 
the interval - ~  < h < ~. By a path p, we mean the set of all points in X 
that are identified by x ~ = x~(h) for - ~  < k -< A. Thus, one endpoint of 
a pathp is the point i with coordinates limx_~_~ x~(k), while the other endpoint 
is the point x with coordinates x~(A). We regard i as the initial point, and x 
as the terminus, of p. The set of all paths p is regarded as a space of paths 
and is denoted by P. 

2. Path-Dependent Functionals and Their Derivatives. Let F be a path- 
dependent functional, i.e., a rule that assigns to each pathp a real number F(p). 
Following the method introduced by us (Pandres, 1962) and independently by 
Mandelstam (1962), we define derivatives of F(p) by giving p an extension 
from its terminus x, while holding the rest of p completely fixed. Any path 
may be extended in this way by extending the domain of x~(k) to the interval 
- ~  < X < A + AA, where AA > 0. The resulting path p + Ap is called 
a path extended from p, and the set of all points in X that are defined by x ~ 
= x~(k) for A < k -< A + AA is called an extension of p and is denoted 
by Ap. If, for each path p and each extension Ap, the condition 

lim~A~0[F(p + Ap) - F(p)] = 0 

is satisfied, we call F a normal functional. We limit our considerations to 
normal functionals. We define F '  by 

F '  = lim F(p + Ap) - F(p) 
AA~O AA 

If the extension Ap is chosen so that, along it, only a single coordinate x ~ 
changes, and if the parametrization is such that on this extension AA = Axe, 
then F'  is called the partial derivative of F with respect to x~, and denoted 
by O~F or by F.~. If, along Ap, the coordinate increments Ax ~ are unrestricted 
and independent, then F '  is called the total derivative of F with respect to 
A, and is denoted by dFIdA. It is also convenient to denote dx~/dX, evaluated 
for h = A, by dx~/dA. If the partial derivatives and the total derivative of 
F are related in such a way that the chain rule for differentiation is valid, 
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i.e., if dF/dA = F~ d.ff'/dA, then F is called a smooth functional. A smooth 
functional whose partial derivatives of all orders are also smooth is called a 
regular functional. We limit our considerations to regular functionals. When 
we wish to emphasize the path-dependent character of a functional F, we 
use the notation F(p). Our functionals include, as a subclass, the ordinary 
functions of x, i.e., functionals which are "path-dependent" in the trivial sense 
that they depend only on the terminus x of a path p; for them, we use the 
notation F(x). 

3. Noncommutativity of Partial Derivatives. From p, let two extended 
paths p + Apl and p + Ap2 be constructed such that the extensions Apl and 
Ap2 do not completely coincide, but such that the termini o f p  + Apl and p 
+ Apz do coincide. The values of F(p + ApO and F(p + Ape) are not 
generally equal. By letting Apl be an extension along which first only x ~ 
changes and then only x ~ changes, and letting Apz be an extension along 
which first only x r changes and then only x ~ changes, we see that OrO~F 
equals O~O~F for functions F(x), but not generally for functionals F(p). 

4. The Requirement That No "Preferred" Coordinate System Shall Exist. 
From the chain rule, we have F ,  = F,~xe,~. If we differentiate with respect 
to x ~ and subtract the corresponding expression with ix and v interchanged, 
we get 

[0~, O~]F = x~,~x~,~[O0, O~]F + b;~[O r, O~]x ~ 

For [0 r, Ov]x ~ 4= O, if we were to demand that [0 r, O~]F vanish, then we 
would find that [0~, Oo]F does not generally vanish. Thus, the coordinates 
x ~ and x a would not be on an equal footing; i.e., the coordinates x ~ would 
be "preferred." The requirement that x ~ and x ~ be on an equal footing compels 
us to consider a space in which paths, rather than points, are the primary 
elements. 

5. Abstract Path Space. Just as the x ~ are regarded as coordinates of 
points x in the arithmetic space X and the set of all paths p is regarded as a 
space of  paths P, another ordered set of N independent real variables x a may 
be regarded as coordinates of points ~ in another N-dimensional arithmetic 
space X, and the set of all paths p may be regarded as another space of paths 
/3. Let M be a one-to-one mapping from P onto/5; let p be the image path 
of p, and let Y be the terminus of p. Since s is determined by p, and p is 
determined by p (via the mapping M), it is clear that the coordinates x a are 
functionals of p, i.e., x a = xa(p). Similarly, x ~ = x~(p). If the image path of 
each path extended from p is a path extended from p, and if xa(p) and x~(p) 
are regular functionals, then M is called a regular mapping. We limit our 
considerations to regular mappings. 
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We began by regarding a mapping M as a path transformation (which 
maps each path p in P to a path/~ in/5 and conversely). There is, however, 
another point of view that is more interesting and useful, and that we now 
adopt: We introduce an abstract path space ?~ in which (abstract) paths 
are the primary elements, and regard M as a path-dependent coordinate 
transformation x a = xa(p) that merely changes the arithmetic-space frame- 
work for discussing ~. The arithmetic spaces X and 1( provide equivalent 
frameworks for discussing ~, and the path spaces P and P are equivalent 
representations of ~. A path p and its image path p are equivalent representa- 
tions of the same abstract path p in ~. The changed point of view that we 
have adopted is analogous to that in which one begins by regarding a suitable 
transformation x a = xa(x) as a mapping from a point x to a point .~ and then 
recognizes that it is more interesting and useful to regard the transformation 
as a diffeomorphism, in which the same point of an abstract point space (a 
manifold) is merely relabeled with new coordinate values. 

Many investigators, beginning with Eddington (1924) and continuing 
to the present (see, e.g., Davies and Brown, 1988), have expressed skepticism 
that a manifold adequately describes physical space. We propose that physical 
space be described by an abstract path space ~. (We note that the path- 
integral formulation of quantum theory suggests that path space is the natural 
setting for a complete geometrical treatment of physics.) Path space possesses 
properties which are sufficiently close to what one conceives of intuitively 
as a space so that one may use it almost exactly as one conventionally uses 
a manifold. The main mathematical difference is that partial derivatives do 
not generally commute, so when one has repeated partial derivatives, one 
must carefully preserve their orders. 

The coordinates x ~ and x a provide equivalent coordinate systems for 
discussing ~, but the points x and $ that x '~ and x a identify in X and X, 
respectively, have no meaning in ~. This is clear, because a path-dependent 
coordinate transformation does not generally establish a one-to-one corre- 
spondence between points of X and X, even in coordinate patches. The 
correspondence between x and.~ is both one-to-many and many-to-one (hence, 
nonunique in both directions). Thus, an assertion that a particle is located at 
a particular point has no (invariant) meaning. However, an assertion that a 
particle is distributed along a particular path has meaning. Accordingly, a 
serendipitous result of our theories is that they provide a geometrical founda- 
tion for string theory. Witten (1988), especially, has emphasized the need for 
such a foundation. Many paths in P with the same termini may have image 
paths in P with different termini, and conversely. Thus, an assertion that an 
abstract path, or a string, is closed (or is not closed) has no invariant meaning. 
Such an assertion appears to have meaning only if one fails to recognize the 
role played by the path-dependent coordinate transformations and, in the 
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belief that the path space is a manifold, restricts one's transformations to the 
diffeomorphisms. How could such a belief arise? The answer is this: There 
exists a class of solutions to our field equations for which the x i are "noninteg- 
rable functions" of the type advocated by Dirac (1978), His nonintegrable 
functions are functionals F(p) whose derivatives are functions F,~(x). (In 
Section 5 we exhibit a large set of  solutions belonging to this class.) For 
these solutions, the h'~ defined by h'~ = x',r are ordinary functions; hence 
[On, a~]hir = 0. If one believes that the fundamental fields are these hi~ or 
other fields constructed from them, then one can work exactly as if the path 
space was a manifold. Thus, one could easily be deluded into believing that 
the path space is a manifold. Such a belief, however, would have profound 
physical consequences. Perhaps the most important consequence, is this: An 
observer who lives in a path space, but believes that he lives in a curved 
Riemannian manifold, would "see" effects which he would interpret as 
resulting from the presence of a Yang-Mills gauge field. This is analogous 
to the familiar case in which an observer who lives in a curved Riemannian 
manifold, but believes that he lives in a flat manifold, "sees" effects which 
he interprets as resulting from the presence of a gravitational field. 

6. The Space-Time Conservation Group. A relativistic conservation law 
is an expression of the form V'~,= = 0 where V '~ is a vector density of 
weight + 1. This is a covariant statement under a path-dependent coordinate 
transformation relating x ~ and x a if and only if it implies and is implied by 
the relation Va,a = 0. The transformation law for a vector density of weight 
+1 is 

V a = -~_ x a ~V~ (2) 
d.~ ' 

where ax/ay, is the (nonzero) determinant of  xCa. Upon differentiating Eq. 
(2) with respect to x a, we obtain 

,~ = xa,~ + - -  V~,~ 
a a.~ 

For arbitrary V ~ we see that a conservation law is a covariant statement if 
and only if 

0.~ '~],a = 0 (3) 

For this reason, we call a path-dependent coordinate transformation conserva- 
tive if  it satisfies equation (3). Now, 
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so, if we use the well-known formula 

Ox Ox xa O~x~,a 
= o7 

for the derivative of  a determinant, and note that xa,~xV,a,~ = - x a  v,~x~, we 
find that equation (3) may be expressed in the equivalent form 

x~a[Or, 0~]x ~ = 0 (4) 

We note that equation (4) is satisfied if [0~, O~]x a = 0. Thus, we see that 
each diffeomorphism is a conservative coordinate transformation, but that 
the converse is not true. We now recall (Pandres, 1981) an explicit proof 
that the conservative coordinate transformations form a group. ]Finkelstein 
(1981), however, pointed out that the group property follows implicitly from 
the derivation given above.] First, we note that the identity transformation 
x a = x ~ is a conservative coordinate transformation. Next, we consider the 
result of  following a coordinate transformation from x ~ to x a by a coordinate 
transformation from x a to x ~. Upon differentiating 

x ~  = x ~ , r  (5) 

with respect to x ", subtracting the corresponding expression with Ix and v 
interchanged, and multiplying by x~s we obtain 

x~,a[Or, O~]x a = xO,~x~a[O~, O~]x a + x~,~[O~, O~]x~ (6) 

We see from equation (6) that if x"o[Or, O,]x o and xe,~[0o, 0,~]x ~ vanish, then 
x"a[Or, 0~]x ~ vanishes. This shows that if the transformations from x ~ to x ~ 
and from x a to x a are conservative coordinate transformations, then the product 
transformation from x ~ to x a is a conservative coordinate transformation. I f  
we let x ~ = x% we see from equation (6) that the inverse of  a conservative 
coordinate transformation is a conservative coordinate transformation. From 
equation (5), we see that the product of  matrices x ~  and x~0 (which represent 
the transformations from x ~ to x a and from x a to x ~, respectively) equals the 
matrix x~,~ (which represents the product transformation from x '~ to xa). It is 
obvious, and well known, that if products admit a matrix representation in 
this sense, then the associative law is satisfied. This completes the proof that 
the conservative coordinate transformations form a group, which we call the 
space-time conservation group. 

We note that if  [0 r, O~]x ~ = 0, then equation (4) is satisfied, i.e., the 
space-time conservation group contains the diffeomorphisms as a subgroup. 
Thus, to show that it contains the diffeomorphisms as a proper subgroup, 
we need only exhibit a coordinate transformation that satisfies equation (4), 
but does not satisfy [0 r, 0~]x a = 0. Such a coordinate transformation is 
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i 
x 

X a = X ~ -~" ~ X 1 MX 2 (7) 
g 

where 8~ is the usual Kronecker delta, and the integral from i to x is taken 
along the path p. We see by inspection that the inverse of the transformation 
defined in equation (7) is 

x ~ = x  ~ - 8 ~  xidx ~ (8) 

where the integral from r to .~ is taken along the path p. Upon differentiating 
equation (7) with respect to x ~, we obtain xe'~ = 8~ + 8~8~x l. By differentiating 
this with respect to x ~ and subtracting the corresponding expression with I~ 
and v interchanged, we obtain 

[Oiz ' Ov]Xa el 1 2 1 2 = 80(8~8~ (9) 

A nonzero component of  equation (9) is [0~, 02]x ~ = 1, which shows that 
the coordinate transformation defined in equation (7) is not a diffeomorphism. 
Upondifferentiating equation (8) with respect to x ~, we obtain x"~ = 8~ - 
8882x I. Upon multiplying this and equation (9), we see that equation (4) 
is satisfied. 

Z The Frame Conservation Group. Any ordered set of N independent 
real variables x ~ may be regarded as coordinates of  points in a N-dimensional 
"Latin" arithmetic space (just as the x '~ are regarded as coordinates of points 
in the "Greek" arithmetic space X). Such a Latin space will be called a frame. 
Under a transformation between frames defined by the Latin coordinates x ~ 
and ~, the transformation law for h;~ is h;~ = x/,,~h'~w The requirement that 
x i and ~ be on an equal footing implies that we must allow only transforma- 
tions which preserve the "Latin metric" gij, i.e., transformations which satisfy 
the condition 

g,~, = gijxi. -mX{~ (10) 

where g,~n = go = d iag( -1 ,  1 . . . . .  1). A transformation that satisfies 
equation (10) will be called a frame transformation, and the group of such 
transformations will be called the frame transformation group. The frame 
transformation group is O(1, N - 1), which is a p-parameter Lie group, 
where p = �89 - 1). Thus xim depends upon parameters 01 . . . . .  0P. If the 
0's are constant, a frame transformation is called global. If the 0's are functions 
0(x), the frame transformation is called local. A frame transformation that 
satisfies the condition 

m 
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where 0• is the determinant of x/,~, is called conservative, and the group 
of such transformations is called the frame conservation group. We note that 
equation (11) may be written 

xi~[Oi, 0j]x ~ = 0 (12) 

via an argument analogous to that which leads from equation (3) to equation 
(4). We see from equation (10) that O• = _ 1. Therefore, equation (11) 
may be written in the form 

x~,i,m = 0 (13) 

The only frame transformations that establish a one-to-one correspondence 
between x i and.6 are the global ones. Thus, only the global frame transforma- 
tions are "frame diffeomorphisms." However, there exist local frame transfor- 
mations that are conservative. Green (1991) noted that an example of  a 
conservative frame transformation is 

= 0 + 

+ [(gT cos x 3 + g~ sin .r3)dx 1 + (g~ cos x 3 - gT sin x3)dx 2] (14) 

From equation (14), we find that 

x,ni = ~b,~0 + ~,~3 + (ST~ + ~'~2)cos x 3 + (~"~] - ~T~2)sin x 3 (15) 

i.e., that 

xl l xl 2 X 1 3 /  COS X 3 --s in  X 3 
_ -  

' , , x2,3 / sin cos " 

'X3'0 X3,1 X'],2 0 0 

It is obvious from the last matrix in equation (16) that equation (14) defines 
a frame transformation. It is just a local rotation in the 1-2 plane. Since x~,i 
depends only upon x 3, and since x 3 = x ~, we see that 

xm,i,~ : X3,i,~ : X3,i,3 

Then, since x3,i = const, we find that x~.i,3 = 0. Thus, we see that (13) is 
satisfied, i.e., that the frame transformation defined by (14) is conservative. 
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3. FIELD EQUATIONS 

As we stated in Section 1, Schrtidinger (1950) considered the simplest 
general relativistic variational principle one can write down, i.e., the "principle 
of stationary volume" 

f x / ~  dNx = 0 (17) 

3.1. Euler-Lagrange Equations 

Since ~(-g)112 = __.~(__g)- ll2~g = __I(__ g ) -  1/2ggO, ff3g~,, equation (17) 

may be written 

f x/--~ dUx = 0 (18) gr 

From equation (18), we see that if we vary g~,  we obtain the Euler-Lagrange 
equations x / ~  g~V = 0, which cannot serve as field equations for a physical 
theory (as Schrrdinger noted). This difficulty persists if we write 

g~v = gij hil~hJv (19) 

where gij = gij = diag(-1 ,  1 . . . . .  1). Latin indices are raised and lowered 
by using gij and gij just as Greek indices are raised and lowered by using 
g ~  and g~ .  We note that 

g~"~g~,, = g~Vgij(hir v + hJv~hi~) = 2gO'VgijhJv~hi ~ = 2hir 

Thus, equation (18) may be written 

f x//~ hi~ dNx = 0 (20) 

From equation (20), we see that if we vary hi~, we get the Euler-Lagrange 
equations ~ h~ ~ = 0, which cannot serve as field equations for a physical 
theory. If, however, we represent h~r as the derivative of functionals x~(p), i.e., 

hip~ = xi,~ (21) 

and vary x i, we find that equation (20) may be written f x / ~  hiP'(~xi).o, dNx 
= 0. Integration by parts gives 

f(x/rL--g hi ~ ~x/),~ dNx -- f ( ~  hi~),~x i dNx ----0 

By using Gauss' theorem, we may write f (x/c-~ hi~xi),~ dUx as an integral 
over the boundary of the region of integration in the arithmetic space X. We 
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discard this boundary integral by demanding that ~x i shall vanish on the 
boundary. Thus, we obtain f (,f-L--~ h i~ ) ,~x  i dlVx = 0, and by demanding 
that 8x i be arbitrary in the interior of the (arbitrary) region of integration in 
X, we obtain the Euler-Lagrange equations 

(V/-L-g hir = 0 (22) 

which are our field equations 

Digress ion:  Why  the Integrat ion Is  No t  over  Path  Space. Since our 
physical space is a space of paths, it may seem that our variational principle 
should be written as an integral over path space. This is not possible, however, 
because we do not have neighborhoods in path space. [Previously (Pandres, 
198 I, 1984a), we attempted to impose a topology on path space by defining 
a "distance" between two arbitrary paths Pl and P2. However, such a distance 
is not invariant under path-dependent coordinate transformations, so neigh- 
borhoods are not preserved under path-dependent coordinate transformations.] 
The closest thing we have to neighborhoods are what we might call "extension 
neighborhoods." The extension neighborhood of a path p is that path together 
with all paths p + Ap which are extended from p. Integration over the 
extension neighborhood of a path p is mathematically equivalent to integration 
over a neighborhood (in the usual sense) in the arithmetic space X. 

3.2. Alternate Forms of the Field Equations 

We see from equation (19) that ~ equals the determinant of hi~, 
which we denote by h. Now, 

0 = (hh:~ 

= hhj,~ + hj'~h.,~ 

= hhj~ + hj~'hh[hi~,,~, 

= hhj~,vhihi v + hhj~hiVhiv,~ 

= -hh)~hi~,.hi ~ + hhj~h[hiv,~ 

= hhf ,  hi~(hi ~ i , - h ~ , ~ )  

Upon multiplying this by hi., we see that equation (22) may be written 

v i i hi (h v,r - h ~,~) = 0 (23) 

Since h i r  xi, w equation (23) may be written 

Xv,i[O!.z, Ov]X i = 0 (24) 

This would be a trivial identity if the x; were ordinary functions (for which 
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[O~, O,]x i = 0), rather than path-dependent functionals. Comparison of equa- 
tions (24) and (4) shows that our field equations just state that the transforma- 
tion from x / to x ~ is conservative, i.e., that path space is "conservatively flat." 

It is important to recognize that conservative flatness does not imply 
flatness in the Riemannian sense, The analysis of Section 2.2.6 shows that 

hir = ~ilx ~- ~ 2 x I  (25) 

satisfies equation (23). However, we have shown (Pandres, 1981) that the 
metric g ~  = gijhi~h/~ formed from the hi~ of equation (25) yields a Riemann 
tensor R ' ~ v  which does not vanish. This is clear from an easy calculation 
which shows that it yields a Ricci scalar R with value 1/2. We also showed 
that the metric formed from the hie of equation (25) satisfies Einstein equations 
with the stress-energy tensor for an electrically charged dust cloud. 

It is convenient to write equation (23) in the form 

where 

and 3a~ is the curl of h;~, i.e., 

C~ = 0 (26) 

Cix : -h iv  fip. v (27) 

fi~v = c3~hiv - Ovhi~ (28) 

We have previously (Pandres, 1981) shown that there exists a conservative 
space-time transformation from x '~ to a special x a coordinate system in which 
hi~ is constant if and only if C~ vanishes. Thus, C~ may be interpreted as 
a curvature vector, although this interpretation will not be needed in the 
present paper. 

3.3. Covariance of the Field Equations 

The quantity , f ~  hi ~ is a vector density of weight + 1 under transforma- 
tions from x ~ to x a. Thus, the discussion of Section 2.2.6 shows that our field 
equations (22) are covariant under the space-time conservation group. 

We now consider how our field equations transform under frame transfor- 
mations. Since a frame transformation leaves the Latin metric unchanged, 
we easily see that it also leaves the Greek metric unchanged; therefore, it 
leaves ~ unchanged as well. Thus, under a frame transformation, we 
have , ~  hi ~ = ~ h,~x~i.  If we differentiate with respect to x ~, we obtain 

( .J - -~  hiP~),l~ = ( . j - ' ~  hraP~),~xm,i + ~ xm,i,m 

From this and equation (13), we see that equation (22) is covariant under 
the frame conservation group. 
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3.4. Local Gauge Invariance as an Approximation to Local Frame 
Invariance 

In Section 2.1 we presented an argument which suggests that the fo,v 
might somehow collectively describe the Yang-Mills fields of modern gauge 
theory. We now take the crucial step which allows us to see that this is indeed 
the case. We define 

Uo,v = Or - O~hi~ + C~khio,hk~ (29) 

where the Cijk are the real, totally antisymmetric structure constants of a Lie 
group; see e.g., Glashow and Gell-Mann (1961). We note that U ~  is the 
usual field strength for a local Yang-Mills gauge theory, ifhio, is transformed 
on its Latin indices as a gauge potential, rather than via a local frame 
transformation. By using the antisymmetry of Ciyk in i and k, we easily verify 
that hi"CijkhJo,hkv = 0. From this and equation (29), we see that equation (27) 
may be written 

Co, = - hiVl~r (30) 

i.e., that the form of  ourf ield equations is unchanged when the curl 3a~ is 
replaced by the Yang-Millsfield UF~. This surprising result provides the clue 
that leads us to the correct physical interpretation of our theory. 

There is no reason to consider transforming hi~ as a gauge potential if 
one recognizes the fundamental role played by the conservation group. The 
raison d'Otre for this unorthodox way of transforming h"o, is that the group 
of frame diffeomorphisms contains global frame transformations, but contains 
no local frame transformations. (It is the frame conservation group that 
contains local frame transformations, as discussed in Section 2.2.7). Thus, 
when one tries to replace global frame transformations with local frame 
transformations, analogous to the step taken by Yang and Mills (1954), one 
fails unless one considers transformations belonging to the conservation 
group. One can, of course, introduce the familiar local gauge transformations, 
but our theory is not invariant under these transformations. They are only 
an approximation to the needed local frame transformations; therefore, they 
appear in the guise of a broken gauge symmetry. We now illustrate this idea 
by using the local three-dimensional frame rotation group 0(3) as an example. 
[Of course, it is known that 0(3) and SU(2) are homomorphic.] Yang and 
Mills recognized that a gauge potential has a very cumbersome transformation 
law, but that one need only consider the infinitesimal transformations. For 
infinitesimal local SU(2) gauge transformations, their result is 

ht-~ = hto, + eljKhJo,O K Jr oK, o, (31) 

where capital Latin indices take the values 1, 2, 3, and elg K is the usual Levi- 
Civita symbol. 
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By contrast, we note that htr` transforms as a vector under a local 0(3) 
frame transformation. Thus, for infinitesimal local 0(3) frame transformations 

h~ = htr` + eljKhJr`O K (32) 

For global transformations (i.e., for constant OK), equations (31) and (32) are 
identical. For local transformations, however, the 0K.r, term in (31) makes it 
clear that this equation does not describe a local frame transformation; there- 
fore, the local SU(2) gauge group is only an approximate symmetry in our 
theory. 

We see from equation (31) that when hZr  ̀is transformed on its Latin 
indices as a gauge potential, the metric gr`, = gzjhZr`hl~ is generally changed. 
It is eminently reasonable that when a particle is subjected to a gauge transfor- 
mation which changes its mass, the gravitational field also should change. 

3.5. Physical Yang-Mills Field from Ricci Rotation Coefficients 

Since ~ hi ~ is a tensor density of weight + 1, we see that (22) may 
be written ( ~ / - g  hi~):r` = O, where a semicolon denotes the usual covariant 
differentiation with respect to the Christoffel symbol. Then, since gr`~ is 
covariant constant, we have 

hir`;r , -~- 0 (33) 

Now, the Ricci rotation coefficients (Eisenhart, 1925) are defined by ~/z~ = 
hz~;~; and the relation "yr`~ = hir`~/,w illustrates our general method for con- 
vetting between Greek and Latin indices. These coefficients are antisymmetric 
in their first two indices, i.e., % ~  = -~/r`~. By using this property, we easily 
see that 

Cr` = " y ~  (34) 

1. Permutation Group Decomposition of  the Ricci Rotation Coefficients. 
The permutation group of degree three has six group elements. One group 
element is the identity. The other five group elements are "cycles" such as 
(l~vcx), which has the effect of replacing IX with v, v with r and r with Ix. 
These five group elements are (txv), (vo0, (r (l~av), and (l~vcx). The Ricci 
rotation coefficients may be decomposed into their totally antisymmetric and 
mixed symmetry parts. (The totally symmetric part vanishes because the 
coefficients are antisymmetric in their first two indices.) The totally antisym- 
metric part of ~ , ~  is 

A ~  = ~("/~v,~ + "y,~ + %~r`) (35) 

The mixed symmetry part of "yr`~, is the quantity 

Mr`~,~ = ~ - A~,~ = ~(2~ ,~  - " y ~  - %,~) (36) 
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which is antisymmetric in Ix and v. Thus, we have 

%,~ = A ~  + M~,~ (37) 

and we see from equations (34) and (37) that 

C~ = M~v (38) 

It follows from equation (36) that 

M ~  + M , ~  + Mv~,~ = 0 (39) 

We note that M i w v  may be expressed in terms offw~, the curl of hi~. We have 
f w v  = hiv, v. - hiw,v = hiv;r~ - hiw;v, so that f-~ = "~ivl x - ~ip.v" If we subtract 
from this the corresponding expressions for f~i  and f~ir we see that 

~ t~ i  = � 8 9  - f ~ i  - fv i~)  (40) 

From equations (36) and (40) we find that 

M ~ v  i = -~(2fr - A v  i - f v i ~ )  (41) 

and this may be written 

-y(28i g v ~ v  - h v~Svhi - h vhi 8r (42) M ~ v i  = 1 n a cr n a fr n ot cr 

Upon using equations (28) and (29) in equation (42), we obtain 

M ~ v i  = T(2~i~vl n ~ ~ _ h n ~ v h  ~ - -  hnvh i a ~ ) ( F ~  ~ - CnjkhJc~hkc~) (43) 

It is easily verified that 

~ ~ ~ ~ ~ - h vh i ~ ) C n j k h  ~h ~ = 0 (2~i ~ v  - h ix~vhi n ~ cr j k 

Therefore, equation (42) reduces to 

Mizv  i --_ ~ ( 2 ~ i ~ 8  n ~ ~ - h"~vhia (r _ hnv hia~)Fnacrc~ ( 4 4 )  

From equation (44), we see that in expression (42) for M~vi,  the curl j ~  
may simply be replaced by the gauge field F~,  [just as in expression (27) 
for C~]. We shall see that the quantity F,-~ does not directly describe the 
physical Yang-Mills field that appears in the stress-energy tensor T~ of 
Einstein's equations. It is, however, the fundamental ingredient which is 
essential for the description of that field. Indeed, F~,,,, in equation (44) may 
be viewed as a field with "bare" or massless quanta, which are "clothed" by 
the 1 n a ~r  n a ~r  n a o-  factor-y(2gi gr  - h v~vhi - h vhi ~ ) ,  and thus become massive. It is 
M ~ i  that appears in T~ as a field with massive quanta. 

2. A f f i n e  C o n n e c t i o n  f o r  Q u a n t i t i e s  w i t h  L a t i n  I n d i c e s .  We shall see 
that it is useful to regard the negative of A~-~ as an affine connection for 
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"total" covariant differentiation of quantities with Latin indices. We use a 
stroke I to denote the total covariant derivative. Thus, for the total covariant 
derivatives of h'~ and hi~, we have 

hi~lv = h i - hJ~A~v = h i - hJ~Aijv = M" (45) ~.v - hiaFat~v ~;v ~txv 

and h,-~ = hj~., + hj,AJi~ = M i ~ .  (For a quantity that has only Greek 
indices, there is no distinction between "ordinary" and "total" covariant 
differentiation; e.g., C ~  = C~,~.) 

We note that our total covariant differentiation corresponds to the use 
of a spin connection with torsion. It is known (Hatfield, 1992) that the 
imposition of additional symmetries, such as supersymmetry, may require 
the use of such a spin connection. 

It is important to observe from equations (39) and (45) that M ~ i  is just 
the "total curl" of hi~, i.e., 

MtLvi = hivr~ -- hi ,  iv (46) 

This observation encourages us to identify Mr tentatively as the "physical" 
Yang-Mills field. For this identification to be valid, the quantity 

M~0 = -~(2fo~ - f~0  - f~0r (47) 

must describe the electromagnetic field. The presence of the extra terms 
-fr - f~0~ in equation (47) may cause one to ask how M~,,. can be identified 
as the physical Yang-Mills field. Our answer is this: The orthodox interpreta- 
tion of hi~ is that it describes an observer frame; and, i fhi~ describes  a f ree ly  
fall ing,  nonrotating observer  f rame,  then equation (47) reduces to M ~ o  = 
-~f0~- This may be seen as follows. The vector field h~162 is tangent to, and 
therefore defines, a timelike congruence of curves. These are the world lines 
of an observer with velocity h~ carrying a "spatial" frame described by ht~, 
where capital Latin indices take the values 1 . . . . .  N - 1. To obtain an h'~ 
that describes a freely falling, nonrotating frame, we choose h~ tangent to 
a timelike geodesic congruence, and carry hl~ along the geodesics by parallel 
transport [to which Fermi-Walker transport reduces (Synge, 1960) along 
nonnull geodesics]. Thus, the condition for freely falling, nonrotating frames 
is h~:~ho ~ = 0. In terms of the Ricci rotation coefficients, the condition is 
%,0 = 0. From this and (36), we see that for an h'r which describes a freely 
falling, nonrotating observer frame, 

M~vo = 1 _ 1 _ 1 T( ho~. ~ ho~. ~) = -~("/0~ "Y0~) = - - -$(h0,,~ - h0~,~) 1-3f0~ 

4. TOTAL EINSTEIN EQUATIONS 

We now present compelling evidence that M j  describes the physical 
Yang-Mills field. We define a "total" Riemann tensor 

~)~c~f3t~ v = hiCt(hif31~lv - hil3ivl~) (48) 
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which is the total analog of the usual Riemann tensor R ' ~ .  We define a 
total Ricci tensor by 91~ = 91'~,~, and a total Ricci scalar by 91 = 91%~. 
By using 

hiahif31~lv = (hiC~hif3to,)h, -- hieZlvhif31~ = M ' ~ l ~  + M % , , M ~ p ~  

we easily find from (48) that 

91'~f~,, = M~ - M~'f~,l~ + M % - , , M " p ~  - M'~ , ,~M"~, ,  (49) 

From equations (38) and (49), we find that 

91~, = Cp.t,, - C,~M~ - M~162 + M",~,,M'~o.~, (50) 

so that 

9t = 2C"~,~ + C~C,~ + M'~'~PMp,,,~ (51) 

4.1. An Identity for the Total Einstein Tensor 

We define a total Einstein tensor by ~ = 91~ - igor91, and we find 
from equations (50) and (5 1) that 

~;~ ,  = C~.l,, - C,~M~ - g~,,C~f,:, - � 89  

- M'~, ,so,  + M%,,,M"o.~,  - �89 (52) 

Next, we notice that 

- M ' ~ , l ~  = M~%l~ ,  = (M~aihiv)lo~ = M~ai iah iv  + M~~ 

= M~a i lah i  v + M ~ a i M i  w = M~ai lah iv  -t.- M~~ 

= M~ai lah iv  + MoT,~M'~,,, ,  

From this and equation (52) we have 

(~F,, = C~l~, - C~,M~ - g~,C%o, - lg~, ,C~C,~ 

+ M~ailahi  v + M ~ % , M % , ~  + M'~v~o ,M'~  _ ~,NI ll/totr~[3 tr.l ~'~ fso-,~ (53) 

Now, 

M~",~M'~,,,,  + M~162 = M,,Fo, M,,%, + M'~g.,~MC',~,, 
= M"~,: , (M,Y, ,  + M~ 

so, by using (39), we have 

M~'r,:,M%,~ + M'~o.~M%r~, = - M ' r ~ M , r ~ ,  ~ = -M': 'p. iM~,,;  (54) 
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Similarly, 

M ,~,~f~ M f~,ro, = ~ t g lt'~" tra~ ll 4'v" ~ ~~ ...[_ M,~,f~ M~,~,~) 

= �89 + Mf~'~'~M,~f~,~) 

= ll~,~,~,~f~A! + MO~fS~Mf~,~,~) " ~ l w  ~rlf~crcL 

= �89 + M':'f~'~)M~,~o, 

and, by using Eq. (39), we have 

From equations (53)-(55), we find that an identity for the total Einstein 
tensor is 

I 

q- Jp . ih iv  - ( M a ~ o i M , ~ v  i - l g ~ v M a f 3 i M e ,  f3i) (56) 

where J ~  = M~,.~,~ is the total Yang-Mills current. It is not generally 
conserved. 

4.2. Total Einstein Equations 

Our field equations (26) just state that C~ = 0. Thus, we see from (56) 
that the field equations imply the validity of the total Einstein equations 

( ~ v  = J~ihiv - (g '~iM~,~,  i - Ig~vMafsigafs i )  (57) 

By contrast with the conventional Einstein tensor G~v, our total Einstein 
tensor @~ is nonsymmetric. We denote its symmetric part by @~. The 
symmetric part of equation (57) is 

(~EY_ - -  1 i - - ~ ( J ~ i  h v + J v i h i ~ )  - ( M a ~ i M o L v  i - i n  ~araf3i~ar ", 

The right side of equation (58) is just what one expects for the stress-energy 
tensor of a non-Abelian Yang-Mills field and associated currents. 

5. SOLUTIONS WITH PATH-INDEPENDENT hig 

5.1. The General Construction 

In Section 2.2.5 we stated that there exists a large class of solutions 
to our field equations for which h"~ is path independent. We now exhibit 
this class. 
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Let Hi  p-~ be N antisymmetric tensor densities of weight + 1 under space- 
time (Greek) coordinate transformations. The only conditions on the Hi  p-~ 

are that: 

1. They be path-independent functions, i.e., that Hi  p-~ = Hi '~ (x ) .  
2. The vector densities of weight + 1 defined by H/P- = H,.P-~,~ be lin- 

early independent. 

From Condition 1, it follows that [0,~, O~]Hi p-~ = 0. From Condition 2, it 
follows that H, the determinant of Hip-, is nonzero. This determinant is 

1 
H = -~. eo,,,...p`Hi~ ' ' ' "  Hmp-e ij ' ' 'm (59) 

It is clear from equation (59) that H is a scalar density of weight N - 1. 
Thus, H 1/(1-N) is a scalar density of weight - 1, so that H t/(1-N)Hip- is a vector, 
i.e., it has weight zero. We define hi p- by 

hi p  ̀ : H1/ ( I -N)Hi  p- (60) 

and, of course, hip- is defined by hip-hi ~ = ~ ,  while gp-~ = gohip-h/~, as discussed 
previously. Thus, we see that 

= Det h'p- = (Det hip-) -1 = { D e t [ H m l - m H i p - ] }  -1 

= [HN/(I-N)H] - l  --_ H V r  

From this and equation (60), we see that 

hip- = Hip- (61) 

By using equation (61), we find that (,fL-~ hip-),p- = 0, i.e., that our field 
equations are satisfied. This is easily verified as follows: 

( ~ - ~  hip-),p- = nip-,v. = nip-v,u,p` 

= i(~.p- , ,  + Hy',, , ,p-) = i :n .p-~  + nivp-,p-,v) 2 " , , ' ' l  ,v,p- 2 " , ' ' t  ,v,p- 

-- !(H.p-v 
- -  2~.''t ,v,p, - -  Hip-v,p-.v) = l[Op-, Or]Hi p-u : 0 

5.2. Direct Product of Compact n-Dimensional Space and Flat 
Four-Dimensional Space-Time 

A slight modification of the construction described in Section 5.1 shows 
that the field equations admit solutions which describe the direct product of 
a compact n-dimensional space and fiat four-dimensional space-time. Let Hip- 
= ~ip- if either i or p, is in 0, 1, 2, 3. Let Hip- = Hip-~,~ if  both i and p~ are in 
4, 5 . . . . .  N - 1, and let the antisymmetric Hi p-v be path-independent functions 
/-/ip-~(x) that do not depend upon x ~ for c~ = 0, 1, 2, 3. Let H, the determinant 
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of Hi% be constant. Define hi v~ = Hi  p'. With this construction, it is easily 
verified that the field equations are satisfied, and that gp`~ is in block form. 
More specifically, it is seen that g ~  = d i ag ( -  1, 1, 1, 1) if both I-t and v are 
in 0, 1, 2, 3; and that gp`~ = 0 if either I-~ or v is in 0, 1, 2, 3 and the other 
is in 4, 5 . . . . .  N - 1. If both Ix and v are in 4, 5 . . . . .  N - 1, we see that 
that g ~  is largely unrestricted because the condition H = const imposes only 
one restriction on the l n Z ( n  - 1) functions Hi p'v that are present for n > 1. 

6. AN ALTERNATE T H E O R Y  

We previously (Pandres, 1981) considered the variational principle 

f C ~  dNx  = 0 (62) 

where hi ~ is varied. We note that ~ equals h, the determinant of h'~; and 
that gp`vC~C,, = gigCiCj, where C/ = Cp`hi ~. Hence, equation (62) may be 
written 

jl giJCiCjh dNx - -  0 (63) 

The variational calculation using equation (63) is a bit less difficult than that 
using equation (62). From equations (27) and (28), we easily see that 

Ci = - h ] v . ( h i ~ , j -  hj~,i) (64) 

We find from equation (63) that 

f (2Ci~)Cih - CiCihhka~3hk~ ) dNx = 0 (65) 

where we have used the relation ~h = hhk'~Bhk~ = - h h k ~ h k  ~. We note that 

h-l(hhiV)a,  = h-l(h,~,hi ~' + hhiVa,) = h - l ( h , i  + hhiV,,,) 

= h-1(hhjVhiv, i + hhiU,v) = -hjV,ih]v -.[- hiV,jh] v 

From this and equation (64), we see that 

C i = -- h -  1 (hhiV),v 

From equation (66), we have 

~Ci = (hhia),~,h-aSh - h- t~[(hhia) ,a]  

= (hhi~')x,h-2hhjf~gt~f~ - h-l[B(hhia)], ,~ 

= -h-l(hhiO,),~,hJf~hjf  ~ - h-l[~(hhiO,)],,~ 

= Cihi f~hj  f~ - h -  l[~(hhi~)],~ 

(66)  
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so that 

~Ci = Cihi~hfl - h-~[~(hhi'~)],,~ (67) 

Upon using equation (67) in (65), we obtain 

f Ckfkhhiet~hiC~ dN'x--2 f Ci[~(hhia)]'a dNX ~--0 (68) 

and integration by parts gives 

I h(Ci,_hi~,.~c,k+,~ lhiaCkCk)~hia dNx _ f[Ci~(hhi~)],~ d N x = O  (69) 

By using Gauss' theorem, we may write the second integral of equation (69) 
as an integral over the boundary of the region of integration of the arithmetic 
space X. We discard this boundary integral by demanding that Ci~(hhi ~) shall 
vanish on the boundary. Thus, we obtain 

I h(Ci,~ i k - h ,~C ,k + �89 ~hi '~ dNx = 0 (70) 

and, by demanding that ~h, .~ be arbitrary in the interior of the (arbitrary) 
region of integration in X, we obtain the field equations 

C i i ~ ll.i ,--k,-~ = 0 (71) 

Upon multiplying equation (71) by hj ~, we obtain 

�9 _ i ~ l ~ i , - k , - ,  = 0  ( 7 2 )  

We note that 

Cr = (C%,~'); , ,  = Ck,,,h~ '~ + C%,'~:,, = C,~,,,hk ~, + C~'yk% 

Thus, we have C k,~h~ ̀~ = C~.~, - C0~/p~ = C~.,~, + CO'y'~f,,~. Upon multiplying 
by h~hf,  we obtain 

Ci,j : hiahj'r(Ca;r r q- CP'yapcr) (73) 

and 

Ck,k = C~;~ + C~C,~ 

If we use equations (73) and (74) in equation (72), we get 

hi~hT(C~;~r -t- CP'yapcr) - -  ~Ca;~ - -  1 i = o 

and, upon multiplying equation (75) by hi~hi~, we obtain 

(74) 

(75) 
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Cr - C,~'y~'~ - g~C~;,~ -�89 = 0 (76) 

which are the field equations for our alternate theory. 
As we noted following equation (45), for a quantity that has only Greek 

indices, there is no distinction between "ordinary" and "total" covariant 
differentiation. From this and equation (37) we see that equation (56), our 
identity for the total Einstein tensor, may be written 

~ = C~:~ - C,~'y'~,, - g~C~;~, - �89 

+ J~ihi~ - (M'~iM,~ i - � 88  + C,~A~'~ (77) 

Now, equation (76) just states that the first line on the right side of equation 
(77) vanishes. Thus, equation (76) may be written 

t~p.1, = J~ihil, - (M~iM~v i - �88 -k- C~,A~'~, (78) 

We note that equation (78) differs from equation (57) only by the term 
C~,A~'~, which is antisymmetric in ~ and v. Thus, the symmetric part of 
equation (78) is identical in form to equation (58), but with hi~ rather than 
a s as fundamental variables. 

We conclude this paper by considering the relative merits of this alternate 
theory and the theory developed in Sections 1-5. 

6.1. Advantages of the Theory  That  F lows  from f i f  ~ dNx = 0 

First, the variational principle ~ f ~ dNx = 0 is simpler than ~ f CgC~ 
dNx = O. That it can be interpreted as a "principle of stationary volume" 

is clear, since the Lagrangian density ~ equals the (Jacobian) determinant 
of as, w Second, ~ involves only g~,  while C~C~/-Zg involves both h'~ 
and its derivatives. Third, if one uses ~ f C ~ C ~ - ~  dNx = 0, one gets field 
equations that are covariant under the conservation group because one has 
put conservation group invariance into the Lagrangian by hand. By contrast, 
conservation group covariance emerges in a natural way from ~ f ~ - g  dNx 
= 0. Fourth, and perhaps most compelling, ~ is a scalar density of weight 
+ 1 under all path-dependent coordinate transformations, while C~C~i - -g  
is a scalar density of weight + 1 only under conservative coordinate transfor- 
mations. We again recall the prophecy of Dirac (1930) that "Further progress 
lies in the direction of making our equations invariant under wider and still 
wider transformations." This suggests that the quantum theory obtained via 
the path integral formalism using the Lagrangian density , ~  will be superior 
to that using the Lagrangian density C~C~-~-g. Fifth, one can hope that a 
theory which gives a true description of nature is unique, i.e., that it is in 
some sense the "only possible theory." There is an intrinsic lack of uniqueness 
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in our alternate theory. This lack of uniqueness arises because if the hi~, are 
varied, then instead of equation (62) one can use the variational principle 

8 f (C~Cr + A),/-L-g dNx = 0 (79) 

where A is a constant. When one varies h~r one obtains the field equations 

C~;,, - C~y~v - g~,,C~;~, - �89 = �89 (80) 

By using the identity (56), we see that equation (80) leads to 

{~EE 1 i = ~ ( J # h  v + Jvihip,) - ( M a ~ i M a v  i 1 a[3i -~g~,,M M,~f~i) (81) 

+ �89 

Equation (81) differs from equation (58) through the inclusion of the "cosmo- 
logical constant" term �89 By contrast, the field equations that flow from 
8f(1 + A ) v / ~  dUx = 0 are identical with those that flow from ~f.fL-~ 
d N x  = O. 

6.2. Advantages of the Theory That Flows from 
8 f C~C~x/~  dNx = 0 

First, from the analysis of Section 3 we see that the field equations 
which flow from 8 f ~ dNx = 0 state that Ci = 0. If the requirement C,- 
= 0 should prove too restrictive to meet the test of experiment, one can turn 
to the theory which flows from 8 f Cr dNx = 0. We see by inspection 
of equation (72) that a sufficient condition for a solution to the field equations 
for this theory is that Ci be constant and that CiCi = 0. We have shown 
(Pandres, 1984a) that this condition is also necessary. 

Second, we note that from equations (51) and (55) there follows the 
identity 

C~C~ = {R + �89 2C~;~ (82) 

This identity shows that the Lagrangian C~C~ may be viewed as the sum of 
the total Lagrangians for the gravitational and Yang-Mills fields, plus a 
divergence term which contributes nothing to the field equations. 

Finally, we recall from Section 3 that if C~ = 0, then there exists a 
conservative coordinate transformation from x ~ to a special x ~ coordinate 
system in which hip, is constant. Thus, all forces can be viewed as "generalized 
Coriolis forces." This is consistent with Occams razor--entia non multipli- 
canda praeter necessitatem but it violates the general relativistic principle 
that no preferred coordinate system should exist. 
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